1. Find

$$\int \frac{3x^4 - 4}{2x^3} \, \mathrm{d}x$$

	writing your answer in simplest form.	(4)
_		
_		
_		
_		
_		
_		
_		
_		
_		
_		

2. Find

$$\int \left(8x^3 - \frac{3}{2\sqrt{x}} + 5\right) \mathrm{d}x$$

giving your answer in simplest form.	(4)

3. The height, <i>h</i> metres, of a plant, <i>t</i> years after it was first measured, is modelled by the equation	
$h = 2.3 - 1.7e^{-0.2t}$ $t \in \mathbb{R}$ $t \geqslant 0$	
Using the model,	
(a) find the height of the plant when it was first measured,	(2)
(b) show that, exactly 4 years after it was first measured, the plant was growing at approximately 15.3 cm per year.	(3)
According to the model, there is a limit to the height to which this plant can grow.	
(c) Deduce the value of this limit.	(1)

4.	A curve has	equation	y =	f(x),	$x \geqslant 0$
		1	,	- (/)	/ -

Given that

- $f'(x) = 4x + a\sqrt{x} + b$, where a and b are constants

• the curve meets the y-axis at -5	
find $f(x)$, giving your answer in simplest form.	(6)

5. Find

$$\int \frac{x^{\frac{1}{2}}(2x-5)}{3} \, \mathrm{d}x$$

	writing each term in simplest form.	(4)
_		

6. The curve C has equation y = f(x)

The curve

- passes through the point P(3, -10)
- has a turning point at *P*

Given that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x^3 - 9x^2 + 5x + k$$

where k is a constant,

(a) show that k = 12

(2)

(b) Hence find the coordinates of the point where C crosses the y-axis.

(3)
